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A multiple-time-scale Reynolds stress model is proposed to extend universality and 
to overcome the defect introduced by the single-time-scale nature generally adopted 
in conventional turbulence models. Using grid turbulence and homogeneous shear 
flow, the model coefficients associated with (for the most part) pressure-strain 
correlation are determined analytically and/or numerically. The model performance 
is verified for a wide variety of flows subject to varying conditions. Comparing my 
numerical results with corresponding experimental data, it is shown that the present 
model can satisfactorily reproduce the change of each Reynolds stress component 
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Introduction 

Although many turbulence models have been developed and used 
in various engineering applications, no single model is able to 
predict all kinds of turbulent flows. It is, therefore, important to 
construct a more universally valid model of turbulence. 

Conventional turbulence models describe turbulent flow char- 
acterized by a single-time-scale, which generally is determined 
by the turbulent kinetic energy k and its dissipation rate e (more 
precisely, by the ratio k/e). Using this single-time-scale nature 
implicitly assumes that the shape of a turbulent kinetic energy 
spectrum is universal. However, this assumption is not always 
valid for many types of turbulent flows. Therefore, these models 
cannot predict flows displaying turbulent behavior of differing 
time-scales or whose turbulent energy spectrums change drasti- 
cally. To overcome this ,defect, Hanjalic et al. (1980) proposed a 
multiple-time-scale model. They divided the turbulent kinetic 
energy spectrum into three parts (the production, transfer, and 
dissipation regions) and constructed a two-time-scale k-e model. 
By applying the model to the cases of grid turbulence produced 
through a sudden contraction, jet, and boundary layers in adverse 
pressure gradients, it was reported that the model yields consider- 
ably improved results. Wilcox (1986, 1988) developed a two- 
time-scale k-o~ model and obtained solutions better than those 
obtained from single-time-scale k-to models for both incompress- 
ible and compressible flows. Kim et al. (1987, 1988, 1989, 1991) 
extended Hanjalic's model and successfully applied it to certain 
kinds of wall shear flows. However, since these models contain 
an eddy viscosity hypothesis, it cannot be expected that they are 
significantly more universal than a single-time-scale Reynolds 
stress model. A multiple-time-scale Reynolds stress model has 
also been investigated. Based on the work performed by Jeandel 
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et al. (1978), Schiestel (1987) derived and modeled multiple- 
time-scale Reynolds stress transport equations. However, the 
validity of these equations has not been verified for several types 
of flows. Further investigation of multiple-time-scale Reynolds 
stress models is needed. 

In this study, the basic forms of the model equations govern- 
ing the transport phenomena of Reynolds stresses and energy 
transfer rates within each partitioned energy spectral slice are 
introduced. These equations are applied to grid turbulence and 
homogeneous shear flow to determine the model coefficients, 
mainly related to pressure-strain correlation. In addition, the 
model performance is verified using a significant amount of 
experimental data under varying conditions. The results show that 
the present model can satisfactorily reproduce the behavior of 
each Reynolds stress component. 

Basic equations of multiple-time-scale Reynolds 
stress model 

Reynolds stress transport equations 

In a multiple-time-scale model, the turbulent kinetic energy spec- 
trnm is decomposed into several parts, and the phenomena within 
each spectral slice are considered. Therefore, a variable is divided 
as follows: 

[=]+f(1) +f(2) +f (3)+  . . . . .  = / +  ~"f(m) (1) 
m 

Substituting this decomposition into the Navier-Stokes equation, 
after some algebra, the Reynolds stress can be obtained as 
follows: 

RU = u iu j  E (m) (n) = U i Uj "b E 11(m)u(n) -./ ..j ( 2 )  
m=n m~n 

Hence, turbulent stress is expressed by the interactions within a 
spectral slice and those between different scales. Comparing this 
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expression with that used in large-eddy simulations (LES), the 
former term corresponds to the Reynolds term and the latter to 
the sum of cross and Leonard terms. It is well known that cross 
and Leonard terms mutually cancel, and thus, neglecting these 
terms does not affect the numerical results. Furthermore, the 
presence of too many variables makes it difficult to determine 
model coefficients. With these points in mind, I neglected inter- 
actions between different scales in the present study. Therefore, 
the Reynolds stress becomes: 

R i j  = E u~m)u~ n) (3) 
ra=n 

and only the transport equation for each Rt/7 ) individually needs 
to be treated. 

By taking the Fourier transformation of two-point fluctuating 
velocity correlation equations and integrating over the (m)th 
spectral slice, we can derive transport equations of the Reynolds 
stress R~/7)(= u~m)u~ .m)) in this slice (Schiestel 1987). 

OR~7> 
= p/Cjm) + T/~m-1) - -  T(m) + dp}~) "t- D!~ ) - e~7) (4) 

Dt 
where 

aUi _ R(.m) aUj p/~jm) = _ n ( , , ) ~  (5)  
kj OX k ,k OX k 

Ti(m):foK(m)f ~Tk('UAiUBjUAk--UAiUBjUBk)dSdK 
DK(m) 

-- d?iy(K(m)) Dt 

1 gK(m) r ~2Uj 

1 (K(m) ~_  ~ 02Ui 
-- -2 Jo jKkj~m dS dKoxkOXm 

K(m) ~ ORij OUk 
+ fo f~m ~ dS dKi~x---- ~ (6) 

2 [K(m) / ' [ ~  ~"~-~A i 1 
dP}'~ '=pL(rn_l)J lpA'~i  - -pa-~j  ] dS dK (7) 

1 0 fK(m) fZ" 
D!?) 2 ~x k JK(m-- 1) J[uAiuBjuAk d- UAiUBjUBk ) a s  dK 

1 ~ - f  K(m) ~ f p A u B j d S d K  
[J OXi "K(m- 1)-- 

0 Rij  
+-1 K(m) f ~ d S d K + v _ _  (8) 

D OXj JK(m-- 1) J ~X 2 

~')= 8v f ~(m) f (9) 
- K ( m - 1 )  

The terms here represent total time derivative (i.e., temporal 
change plus convection), production, energy transfer from (m-1)th 
to (m)th spectral slice, energy transfer from (m)th to (m + 1)th 
spectral slice, redistribution, diffusion, and dissipation, respec- 
tively. The temporal change, convection and production terms 
can be handled exactly, but the remaining terms have to be 
modeled. 

Energy transfer rate equations 

The most remarkable difference between single- and multiple- 
time-scale models is the treatment of energy transfer. Single- 
time-scale models assume that energy transfer is constant over 
the spectral space and is identical to the dissipation rate of 
turbulent kinetic energy. Hence, the energy transfer does not 
appear explicitly in the model equations. 

Although it may be possible to derive exact transport equa- 
tions for energy transfer rates from Navier-Stokes equations, it is 
not presently realistic. Schiestel (1987) proposed transport equa- 
tions for T(m)(= ½T(~ )) extending the work of Jeandel et al. 

Notation 

aij 
aTq 
Ci, ~ i  
Dij 
fdS 
fdK 
k, e 
Pij 
P 
R~j 
r 
Sq 
S 
r,j 
t 
Vi 
Ui 
Xi 
H 
111 

anisotropy tensor of R i , Ri j / /e  - 2/3~ i J ] 
anisotropy tensor of Tij, T i j / T -  2/3~ij 
model coefficients 
diffusion 
surface integration over sphere of radius K 
integration over wave number K 
turbulent kinetic energy, 1/2Rii  
production 
fluctuating pressure 
Reynolds stress, UiU j 
ratio of turbulent kinetic energies, e(2)/e (z) 
mean strain rate 
ratio of anisotropic tensor, a(2)/a(1) t] ~ z I 
energy transfer rate 
time 
mean velocity component 
fluctuating velocity component 
Cartesian coordinate 
second invariant of anisotropy tensor, aijaji 
third invariant of anisotropy tensor, auajkaki 

Greek 

~,,~,, 
~ij 

~ij 
K 
P 
~q 
~q 

(~ij 

ratio of energy transfer rates, T(2)/T (1) 
integral constant 
Kronecker's delta 
dissipation rate of total turbulent kinetic energy 
dissipation 
wave number 
kinematic viscosity 
pressure-strain correlation 
surface integration of 2-point velocity correlation, 
f (Ui)a(Uj)B dS 
mean vorticity 

Superscript 

(m) value in the mth spectral slice 

Subscripts 

A, B different points with a displacement 
R rapid part of pressure-strain correlation 
S slow part of pressure-strain correlation 
T energy transfer rate 
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(1978). However, since he assumed a - 5 / 3  law for the energy 
spectrum, isotropic turbulence, and proportionality of T/~ m) and 
T(m)R~i"])/e ~m) in his modeling process, the model equations lack 
universality despite their complex forms. Seeking a more univer- 
sally valid model, I set out to construct transport equations for 
energy transfer rates by following the intuitive approach intro- 
duced in early works concerned with modeling of the dissipation 
rate equation. Introducing; the time constant e (m) /T  (m) and model 
coefficients into the Re, ynolds stress transport equations, the 
transport equations for energy transfer rates in the (m)th spectral 
slice can be expressed as follows: 

DT(m) T (m) T(m) T (m) 
Dt = ot(m) e_.~ p(fl)  + O~(2.) e . ~  Ti(jra-1) - o£(3m) e . ~  Ti(m ) 

_1.. (~)(m)T,/ + D(m)Tij -- e(m)Tii (10) 

Each term here represents the same quantity as the corresponding 
term in the Reynolds stress equation. It should be noted that 
energy transfer to the tirst spectral slice does not exist (i.e., 
T~ °) = 0), and the rate of energy transfer to the last spectral slice 
is equal to the dissipation rate of turbulent kinetic energy (i.e., 
T (") = e) when the turbulent Reynolds number is sufficiently 
large. 

Grid turbulence 

Mode/equations 

A two-time-scale model is probably the most useful in practical 
applications because of the relatively short computation time. 
Therefore, I treat a two-time-scale Reynolds stress model in the 
present study. In this model, the energy spectrum is decomposed 
into three parts (i.e., low, intermediate, and high wave number 
regions). Below, I refer I:o the low wave number region (m = 1) 
as the "large-scale" and the middle one (m = 2) as the "small- 
scale. ' ' 

The pressure-strain term in a multiple-time-scale Reynolds 
stress transport equation is similar to that in the single-time-scale 
case. This term consists of slow, rapid, and wall terms (Schiestel 
1987). Therefore, such a model, valid in a single-time-scale 
model, can be used in a multiple-time-scale model in principle. 
To reproduce the nonlinear behavior of turbulence, I borrowed 
from a generalized model (Lumley and Newman 1977) for the 
slow term in pressure-strain correlation. Then, model equations 
for grid turbulence are expressed as follows: 

dRy7') 
= 7 - x )  _ t i T )  _ ",J 

dt 

(~(m)T(m)[ a(m)m(m) __ -t-~2 . ~ i k  ~kj l l I ( m ) ~ i j )  (11) 

dT/~" ) T ~m ) T(m) T('~)T(") 

= - -  "" - 3 e(m) ij e(m) Tij a t  °L(m) e (m) Ti~m 1)  _ o [ ( m ) _ _ ~ ( m )  _ or(m) a(m) 

T(m)T (m) [ 1 
~(m) | a(m), ~(m) -- --lI(m)8 (12) 

However, because small-scale turbulence is not expected to be 
highly anisotropic, a linear equation should be sufficient in 
describing small-scale behavior (i.e., C~2 z) = ot~ ) = 0). Also, a~  ) 
has no meaning, because T~ °) = O. 

Determination of mode/coefficients 

C o e f f i c i e n t s  o~ mj and oL~ TM. The coefficients {x(3 m) and 0~(2 =) 
were determined using experimental data for the decay rate of 
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grid turbulence. Contracting Equations 11 and 12, we obtain the 
following equations. 

de (x) 
- -  ---- - T  (1) ( 1 3 )  

dt 

d e (2) 

dt 

dT (1) 

dt 

- - =  T (1) - T (2) (14) 

T (1) 
ore) e - ~  T(I) 

T(2) ,-,~ 
dT(2) et(22) T O ) - -  0 / . (2 )  - -  T~=, 

dt = 3 e(2) 

(15) 

(16) 

where T (2) is equal to the dissipation rate ¢. 
First, let us consider the situation relatively far downstream 

from the grid. In this region, it is expected that the ratio of 
large-scale to small-scale energy [i.e., r = e(2)/e (1)] approaches a 
certain asymptotic value (Kim and Chen 1987), and the turbulent 
Reynolds number is still large. Def'ming the total turbulent kinetic 
energy as e = e (x) + e (2), the following equations can be derived. 

1 r 
e (1) = e, e (2) = - - e  (17) 

l + r  l + r  

Substituting these relations into Equations 13 and 14, after some 
algebra, we obtain: 

T(2) 
= 1 + r ( 1 8 )  

T(1) 

Thus, the ratio of energy transfer rates becomes constant. 
Using the above relations and arranging Equations 13 and 15, 

we can derive an expression for the temporal change of the total 
turbulent kinetic energy e. 

e = [3't -x/(a~l)- 1) (19) 

Next, let us consider the situation much further downstream 
from the grid (i.e., the terminal stage of decaying turbulence). In 
this region, it can be assumed that the contribution from large- 
scale motion is relatively small and that the turbulent Reynolds 
number is small. Thus, by neglecting these contributions in 
Equations 14 and 16, we can obtain the following expression for 
e .  

e -- 13"t -1/(~2)- x) (20) 

Many experiments indicate that 1/(a~3 m) - 1) takes values in 
the range 1.0 ~ 1.25 at high turbulent Reynolds numbers and 
approximately 2.5 at low turbulent Reynolds numbers. I adopted 
the values 1.25 and 2.5 for the respective situations. Thus, 

a~  ) = 1.8, a ~  ) = 1.4 (21) 

Following similar steEs for the contracted equations, the ex- 
u ( 1 )  ( 2 )  pression rela "rig a 3 ,  a 3 ,  and a ~  ) can be derived 

~ )  = ( 1  + r ) ~  ) - r e ~ )  ( 2 2 )  

The asymptotic value of the energy ratio r (=  e(Z)/e 0)) depends 
on the partitioning wave number. I set r = 1.5, following the 
study of Kim and Chert (1987). Therefore, Equation 21 and 22 
leads to: 

ct~ ) = 0.8 (23) 

However, these coefficients are not constant, but rather depend 
on the spectral shape. Hanjalic et al. (1980) and Kim and Chert 
(1987) proposed that the energy transfer from large-scale to 
small-scale increases when the energy ratio r is made small. In 
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this study, I consider both a~ ) and c~ ) as functions of r. The 
functional forms were determined by computational optimization 
under the following four constraints: (1) They reproduce the 
experimental data measured by Makita et al. (1993) under highly 
anisotropic conditions; (2) the energy ratio r increases monotoni- 
cally during the decay; (3) r approaches 1.5; and (4) they attain 
the proper asymptotic values (i.e., 1.8 and 0.8, respectively). 
With these constraints in mind, I adopted following functional 
forms. 

a O) = 1.8 rain(1.0, r ) ,  a ~  ) = 1.4, 

a(22) = 0.8 - 0 .25(r  - 1.5) (24) 

Coeffi¢ients ~m) and ~2 ''}. These coefficients were deter- 
mined by use of realizability conditions (Schumann 1977) in each 
spectral slice. First, let us consider the situation where the 
influence of the initial state is negligible. Then turbulence is 

(') n nearly isotropic, and the nonlinear effect of aij c a  be neglected. 
In addition, energy transfer rates T (1) are expected to be isotropic. 
Therefore, Equation 11 with m = 1 reduces to 

dR(~k ) 2 
= - --TO) - C(1)T(1)"(1)l "kk = 0 (no summation over k)  

dt  3 
(25) 

Using a realizabflity constraint (R(/~ ~ 0, and therefore , o )  
-2 /3 ) ,  this equation yields C~ a) = 1.0. -I,/, 

Similarly, using Equation 11 with m = 2 and Equation 18, the 
following equation can be derived. 

T (2) - T O) r 
(26) C}2) T (2) I + r 

Assuming the asymtotic value r = 1.5, we obtain 

C~ 2) = 0.6 (27) 

Next, let us consider the situation where the turbulence is 
strongly anisotropic, and the nonlinear effect cannot be neglected. 
Then C~ i) is expected to be larger than the asymptotic value 1.0 
and should assume values in the range 1.5 ~ 1.8, as seen in the 
case of successful study of single-time-scale Reynolds stress 
models (e.g., Launder et al. 1975). In addition, as was found in 
the computational optimization of the functions a(~ ) and a(~ ), 
existing experimental data put the value of r around r = 0.6. 
Considering these two points, the following functional form was 
adopted. 

0.3 
C~ ') = 1.0 + - -  (28) 

r 
In addition, for m = 1, Equation 11 reduces to 

dR(kl)dt T(1)-f'(1)T(1)"(D+C(1)T(1)(a(1)a(1)kk ~1 "kk 2 t kk k,~- 111 ( 1 ) ) = 0  

(29) 

Since the anisotropy of the energy transfer rates depends on that 
of the Reynolds stresses in a highly fluctuating flow, it can be 
assumed that the anisotropy of T~ 1) is the same as that of R (1.). 
Using this assumption, Equation 29 becomes 

dR(1)dt ( aO) a- 2 ) T(D - -- ~1 kk 

("(1)'T'(1){ ~(1)~(1) -- (30) ~ 2 .  t .kk.kk 1H(1)) = 0  

Applying the realizability condition to this equation, we obtain 

C~ 1) C(1)/_~ + --111(1)) e ~ 3 = 0 (31) 

As the equality must be satisfied when II (1) is maximum, Equa- 
tion 31 gives 

C(21) = 1.5C~ 1) (32) 

Coefficients ~t~ ''j and ot{s m). Since there is apparently no 
accessible way to obtain these coefficients analytically, I deter- 
mined them by computational optimization. The computations 
were performed using the experimental data measured by Makita 
et al. (1993) with an initially positive third invariant III. The 
following six constraints were imposed: (1) the coefficient values 
are able to reproduce the experimental data; (2) the energy ratio r 
increases monotonically; (3) r approaches 1.5 asymptotically; (4) 
the R(~ m) do not intersect one another during the decay; (5) the 
T/(m) 30 not intersect; and (6) the second invariant H decreases 
monotonically. Under these constraints, I adopted the following: 

a~  ) = 1.6C} 1), oL(42) = 2.5, o[(51) = 1.6 (33) 

Initial conditions and numerical method 

The method to set initial conditions is crucial for a multiple- 
time-scale turbulence model. In the present study, I set initial 
values on the basis of the following assumptions. 

The first assumption is that the anisotropy of small-scale 
turbulence is proportional to that of large-scale turbulence. Thus, 
a~ ) =  sa~) ). This assumption leads Reynolds stress components in 
each spectral slice as follows: 

[ l + r  2 ) 1 
e (34) R(ilj)= ~ ~ r s a i J  + -38iJ, l + r  

[ l + r  2 ) r 
e (35) R(i2)= l-]--~rsSaq + 3~3iY, l + r  

The second assumption is that in each spectral slice energy 
transfer rates have the same anisotropy as do the Reynolds 
stresses. This assumption gives: 

[ 1 + r 2 ) T (2) 
Ti (1)= [ ~--~rsaij  + -~5ij, [3 (36) 

[ l + r  2 
7 (2) = [ -~-~rsSaij + -~i j )T  (2) (37) 

It is expected that the sensitivities of s and [3 to r are 
dependent on the state of turbulence. For typical cases, these take 
values; r = 1.5, s = 0.0, [3 = 2.5 for asymptotic grid turbulence, 
r = 0.25, 13 = 1.0 for turbulent boundary layers (Kim and Chen 
1987), and s = 1.0 for r = 0.0. Considering these conditions, I 
made s and [3 assume the following functional dependence on the 
energy ratio r. 

s = e x p ( -  2 .0r2) ,  13 = 1.2r + 0.7 (38) 

Computations were performed through the following four 
steps. Step I. As T (z) = e, an initial T (z) is calculated with the 
use of a standard k -  e model. Step IL Solving the contracted 
Equations 13-16, an initial energy ratio r is estimated. Step IlL 
Using Equations 34-38,  initial conditions of R(~7 ) and T, (m) are 
calculated. Step IV. Solving Equations 11 and 12, the temporal 
changes of all variables are calculated. 

A fourth-order Runge-Kutta method was used in all simula- 
tions. The time step was set to such a value that the terminal time 
was reached in each case after 200 time steps. It should be noted 
that, although I calculated the same flows using time steps half 
this size, the maximum difference in the Reynolds stresses was 
only 0.7%. 
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Results and discussion 

I considered six sets of experimental data. The data obtained by 
Makita et al. (1993), Le Penven et al. (1985), and Gence and 
Mathieu (1979) show a positive third invariant. These data 
indicate that nonlinearity exists when the third invariant is posi- 
tive and becomes stronger with the increase of anisotropy. The 
remaining three cases measured by Makita et al., Le Penven et 
al., and Tucker and Reynolds (1968) show a negative third 
invariant initially. The data by Makita et al. indicate that nonlin- 
ear behavior is exhibited even when the third invariant is nega- 
tive, while the second and third sets of data do not exhibit 
apparent nonlinearlity. Their turbulent Reynolds numbers are 
large enough to neglect low Reynolds number effects. 

My numerical results for the time development of the total 
turbulent kinetic energy and normal Reynolds stresses and the 
behavior of the second and third invariants (i.e., invariant map) 
are compared in the figures with the corresponding experimental 
data. In addition, the behavior of Reynolds stresses and energy 
transfer rates in each spectral slice are displayed. 

Figures 1-3 depict results for cases with a positive third 
invariant. Figure 1 shows the results calculated for the experi- 
ment performed by Makita et al. (1993). The data shown here are 
those used in determining the model coefficients. Thus, the 
numerical results are, not surprisingly, in good agreement with 
the experiment. Figure 1 a shows the time dependence of the total 
turbulent kinetic energy and total Reynolds stresses. The turbu- 
lence initially tends toward axisymmetry and gradually decays. It 
is evident that the present model can reproduce the nonlinear 
behavior satisfactorily. This aspect can also be seen in the 
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invariant map (Figure lb). Figure lc  displays the time depen- 
dence of Reynolds stresses in large- and small-scale turbulence. 
Large-scale motion initially accounts for most of the energy, but 
as time passes, the energy becomes more evenly distributed 
among scales through the decay. In addition, large-scale motion 
becomes axisymmetric rapidly, and small-scale motion tends 
toward axisymmetry as it is influenced by the large-scale motion, 
although small-scale equations do not include nonlinear terms. It 
is very interesting that the small-scale turbulent behavior is 
governed by that on large-scales. Figure ld  shows the temporal 
changes of the energy transfer rates. The results show that energy 
transfer rates become axisymmctric initially, and they behave in a 
manner similar to the Reynolds stress components. However, the 
energy transfer rates become isotropic more quickly than do 
Reynolds stresses. In existing single-time-scale models, it is 
generally assumed that the energy transfer rate is equal to the 
dissipation rate and that it is isotropic. Thus, the present model 
supports this hypothesis in the case of turbulence with weak 
anisotropy. 

Figures 2 and 3 show the results for the experiments per- 
formed by Le Penven et al. (1985) and Gence and Mathieu 
(1979). The results here are similar to those for the experiment by 
Makita et al. (1993). Numerical results are again in good agree- 
ment with the experimental data. The nonlinear behavior is 
correctly captured. It should be noted that existing single-time- 
scale models cannot predict this nonlinear behavior satisfactorily 
(Yamamoto and Arakawa 1991). Although the temporal changes 
of Reynolds stresses and energy transfer rates in each spectral 
slice are not shown here, the results indicate that the small-scale 
energy transfer rates remain anisotropic in the terminal stage. 

2 
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Comparison of numerical results with experiments (data: Makita et al. 1993, II1> O) 
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Figure 2 Comparison of numerical results with experiments 
(data: Le Penven et al. 1985, II1> O) 
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Figure 3 Comparison of numerical results with experiments 
(data: Gence and Mathieu 1979, II1> O) 

This fact suggests that these experiments were carried out over a 
relatively short period. 

Next, I consider another three cases with an initially negative 
third invariant. Figure 4 shows the results for the experiment 
done by Makita et al. (1993). These data are the most anisotropic 
among the experiments used in this study. Therefore, a very 
strong nonlinearlity is shown. It has been thought that the turbu- 
lence with an initially negative third invariant evolves toward 
isotropy linearly (Le Penven et al. 1985). However, these data 
indicate that turbulence has a strong nonlinear character, even in 
the case with a negative third invariant, if the anisotropy of 
turbulence is large enough. Figure 4a shows the time dependence 
of the total turbulent kinetic energy and total Reynolds s t r e s s e s .  

The decay calculated using the present model delays slightly 
around t = 0.7, but the agreement is satisfactory. Makita e ta l .  
(1993) noted that initially axisymmetrization takes place and at 
later times decay becomes dominant. This behavior is reproduced 
by the present model qualitatively. Figure 4b shows the evolution 
in a phase space. The numerical results display very strong 
nonlinearity, but the agreement with the experimental data is not 
complete. This would be caused by the choice of unsuitable 
functions for ot~ ) and ix(22). 

The remaining cases with a negative third invariant are the 
experiments performed by Le Penven et al. (1985) and Tucker 
and Reynolds (1968). These data are more isotropic than Makita 
et al.'s (1993) data. Figures 5 and 6 show the results, respec- 
tively. The numerical results are in good agreement with the 
corresponding experiments. The present model apparently has no 
problem reproducing the results of experiments, except in the 
case where the turbulence is highly anisotropic. It should be 

noted that the numerical results show the tendency of the third 
invariant to change sign. In fact, further calculations showed that 
the third invariant becomes positive, and the turbulence then 
evolves toward isotropy. 

These computations make it clear that the present model can 
satisfactorily predict the return to isotropy problems with various 
states of turbulence. In addition, the temporal changes of both the 
Reynolds stresses and energy transfer rates are smooth and 
possess no singularity in all cases. Therefore, it is recognized 
indirectly that the method used here to set initial conditions is 
reasonable for a wide range of grid turbulence. 

H o m o g e n e o u s  shear  f l o w  

Mode/equations 

A rapid term in the pressure-strain correlation plays an important 
role in flows where a mean velocity gradient exists. Hence, this 
term is the key to modeling in engineering applications. 

According to Speziale et al. (1991), the rapid term model in 
the pressure-strain correlation can generally be expressed as 
follows: 

2 
dPRq=CleS~j+C2e(aikSjk+ajkS,k--'~amnSmn~i]) 

+C3e(ai/~a/clSyl+aj/~a/clSil--;alraaranSnlSq) 

+ C4e(aiktoj, + ajktoik ) + Cse(aika,to # + ajkakto~it) (39) 
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where 

l l a U  i|~y._~.aUj) (°iJ=-21(aU/ a E )  ( 4 0 )  
s " =  + - ,  ' % axi 

In a multiple-time-scale Reynolds stress model, it may be possi- 
ble to include nonlinear terms. However, to do so would require 
the inclusion of too marly coefficients, and it becomes impossible 
for them to be determined. In addition, nonlinear effects of the 
anisotropy tensor are of secondary importance in the flow when 
the anisotropy is not large. Therefore, a linear model was adopted 
as the first step of my study. 

It was assumed that the rapid term model in the energy 
transfer rate equations is proportinal to that in Reynolds stress 
equations. This assumption is the same as that proposed in the 
modeling of dissipation rate equations by Tagawa et al. (1991). 

Considering the poh]ts described above, the governing equa- 
tions for flow displaying homogeneous shear are modeled as 
follows: 

aR(i'7 ) 
0-----~ = P ( ? )  Jr T/~" - 1) _ ri(jm) Jr (I)(m>Sij -'i- (~)(m)R,, (41) 

aT (m) = T(m) T(I)T(m-1)  

at e (m) 

T(m)T(m) 
--  Ot (m) "at" ( I ) ( m )  Jr 0 (m) (42) e(m) TSij TR 0 

where 

OU i _ R (m) aUj 
f/(jm) = _R~r)  Ox_.__~k ik Ox k 

f~(m) = _ t"~(ra)T(m)a(m) 

(~(m)T(m) { .(m)~(m) _ "1"-~ 2 ~ i k ~ j k ~ I I ( m ) s i j )  

f~(m) = c(m)e(m)Sij Rq 

("(ra)o(ra)[ -(m)~ + a}r)Sik- ].(m) s ~) + "4 ~ ~¢"ik '-'jk 3 "*kt kt q 

J r  ~St~(m)"(m)['(m)'"~ ~ik wjk + a~r)~)ik ) 

T(m)T (m) 
dp(m) = -- Or(4 m ) a (m) 

TSq e(m) Tij 

T(m)T (m) 
+Or(rn) [ a(m)a(m)-- l l l ( m ) 8  1 

e(m) ~ r,k Tik 3 r ij] 

T (m) 
f~(m) = ot(m)__t~(m) 

TRq 6 e(m) Rq 

(43) 

(44) 

(45) 

(46) 

(47) 

Dete rmina t ion  o f  m o d e / c o e f f i c i e n t s  
m) Relationships b e t w e e n  model  coefficients ~ . The 

rapid-term model includes eight coefficients C~ ' ') and ~t (m). They 
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were determined by using the experimental data for homoge- 
neous shear flow. The experimental researches have been re- 
ported in detail by Rose (1966), Champagne et al. (1970), 
Mulhearn and Luxton (1975), Harris et al. (1977), Tavoularis and 
Corrsin (1981), Karnik and Tavoularis (1983), and Rohr et al. 
(1988). In the former three cases, weak shear causes turbulence 
to approach an asymptotic state, while in the latter four case 
strong shear causes turbulence to increase exponentially. Because 
the temporal changes of Reynolds stresses are zero in the asymp- 
totic state, it is easy to treat this situation analytically, and it is 
very convenient to use this case to determine model coefficients. 
Therefore, I decided to use this asymptotic state to determine the 
model coefficients. The basic procedure is similar to that of 
Launder et al. (1975). The experimental data used for the purpose 
are those of Champagne et al., recommended by Ferziger (1981). 

First, I derive the relationships between model coefficients 
C} m) analytically. Here, let us consider homogeneous shear flow 
where a mean velocity exists in the Xl direction, and a gradient 
exists in the x 2 direction. Assuming the turbulence reaches an 
asymptotic state due to the weak shear, the following relations 
can be expected for the turbulent kinetic energy transfer. 

pO) = T(1), pO) + p(2) = T(2) (48) 

In addition, assuming that the anisotropy of small scale Reynolds 
stresses is s times that of those for large-scales and that the 
anisotropy of energy transfer rates is nearly the same as that of 
Reynolds stresses, the anisotropy tensors a!~ '), Reynolds stresses 

R(/7 ), and energy transfer rates T/(7) in each spectral slice can be 
represented as follows: 

a(1) = ( 1 + r  ] 
,1 1 + rs ] aU (49) 

a( 2,= ( 1  + r ] 
'J ~ 1 + rs } saij (50) 

[ l + r  2 ) e (51) 
[ 7- r,a'J + l + r 

[ 1 + r 2 ) re (52) 
R(i~ = ~ ~ s a q  + -~Sij 1 + r 

[ 1 + r 2 ) T (2) 
Ti (1)= ( -i---~rs a i j + -~ 8 i j -~ (53) 

[ l + r  2g  IT (2) (54) 
Ti(2) = ( ~ saq + 3 i j] 

On the other hand, by decomposing the total anisotropy tensor 
ai] , we obtain 

Rij 2 1 r 
a i j  = e 3 ~ij --a{l)l+r '~ + l + r  TMa(2) (55) 

Using these relations and arranging Equation 41, the total 
anisotropy tensors can be represented with model coefficients. 

4 C5 O) + + _ _ _  
Ca (1) 

C(1)[ a(1) 2 
a l l  = 3 3 2 I 11 ~ 1 2  

/-/(1)2 

/ [ ( 1  + r)(1 + C~1))] 

+ [ r ( 3  C~ 2) C5(2)) (1 - ~ ) ]  

1 

2 C4 (a) ( '0)(  A')2 
a= = 3 - 3 -  + C~') + ~ ~.~ + a ~  ~ -  

/ [ ( 1  + r) (1  + C~1))] 

2 C4 (2) + C5(2)) (1 _ ~ )  ] 

2 2c4~1)+'~z [ 33 
a33 3 + 3 

1[(1 + r ) (1  + c~l))] 

[(2 ;I ] 
+ r - - -~+  3 

(56) 

H(1)3 )]  

(57) 

(58) 
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The model coefficients are to be determined so that these equa- 
tions agree with the experimental data. 

D e t e r m i n a t i o n  of e n e r g y  ra t io  in t h e  a s y m p t o t i c  s ta te .  
The energy ratio in the asymptotic state must be estimated before 
determining model coefficients. 

The experiment performed by Champagne et al. (1970) indi- 
cates that the magnitudes of anisotropy tensor elements are as 
follows: 

al l  = 0.30, a22 = - 0 . 1 8 ,  a33 = - 0 . 1 2 ,  

a12 = - 0 . 3 3  (60) 

Varying the energy ratio r from 0.2 to 0.8 by increments of 0.02 
(m) (m) (m) and C 3 , Ca , and C,I from 0.0 to 2.0 by increments of 0.2, I 

determined those sets that satisfy Equations 56-59 to within 
+0.015 (i.e., _+5% of all). On the right-hand sides of Equations 
56-59, the unknown variables, except for model coefficients, 
were given by Equations 38, 49, and 50. The numerical ranges 
used in the calculation were determined by a priori test with a 
wider range ( - 5 . 0  ~ 5.0) and a larger increment (0.5). The 
numbers of sets are shown in Figure 7. It is obvious that such sets 
exist from r = 0.3 to 0.6, and there is a peak around r = 0.5. 
This fact suggests that stable sets which are not strongly depen- 
dent on changes in model coefficients exist around the peak. 
Although Equations 56-59 are derived using a number of as- 
sumptions and approximations, it is reasonable to expect that the 
asymptotic value of r ,exists near this peak. Therefore, I assumed 
that the energy ratio r takes the value 0.5 in the asymptotic state 
of a homogeneous shear flow. 

Coef f ic ien ts  a ~ ' .  "l~ese model coefficients were determined 
by using the contracted equation forms of Equations 41 and 42. 
They are expressed as: 

0e (1) 
= pO)  _ T(1) ( 6 1 )  

0t 
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0e (2) 
= p(2) + T O) _ T(2) ( 6 2 )  

0t 

0T (1) TO) T(1) 
= 0-(i)__p(1) _ 0-(i)__,rO) (63) 

0t 1 eO ) 3 e ( 1 ) -  

T(2) T(2) ,~ 
0T(2) = 0-(12) p(2) + 0.(2) ~ T(1) _ ,,.,,(2) _ _  T,.~, (64) 
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Assuming the asymptotic state, and using Equations 61-64, the 
following relations can be obtained. 

- -  3 ' ~ - -  1 ( 6 5 )  

Since I set r = 0.5 in the asymptotic state, Equations 24 and 38 
leads to c~  ) = 0.9; ~(32) = 1.4; ~ )  = 1.05; and 13 = 1.3. Substi- 
tuting these values into Equation 65, model coefficients or(1 '~) can 
be obtained as follows: 

Od (1) = 0.9, e(x 2) = 2.6 (66) 

Although the production in the small scale p(Z) is included in 
the model, this fact does not force p(Z) to be large in the 
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Figure 9 Comparison of numer ica l  results with experiments 
(data: Harris et al. 1977) 

equilibrium state. In fact, p(1) = T(1) = T(2) and p(2) = 0 were 
realized in my calculations. 

Coefficients --itt(ra) a n d  ot~ m). The remaining coefficients were 
determined through computational optimization. The sets of model 
coefficient values which were obtained in the determination of 
the asymptotic energy ratio were used in conjunction with the 
experimental data measured by Champagne et al. (1970). I sought 
a set consistent with the experimentally observed behavior, for 
example R22 intersects R33 during the change. Finally, I adopted 
following values. 

C3 u) = 0.5, C4 O) = 1.2, C~ ') = 0.4, e¢~ ) = 1.4 

C3 (2) = 1.0, C4 (2) = 0.5, C5 (2) = 0.7, a ~  ) = 2.5 (67) 
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Initial conditions and numerical method 

The numerical procedure here is similar to that used in the 
simulation of grid turbulence (see Initial conditions and numeri- 
cal method section). However, two points are different. One is 
that the shear component of the energy transfer rates was as- 
sumed to be zero in the initial state. This is because the dissipa- 
tion of shear Reynolds ~aress is one order smaller than that of 
normal Reynolds stress. The second point is that the Reynolds 
stress components were found by interpolating the experimental 
data used in estimating the energy ratio r (i.e., Step H). 

Results and discussion 

Three homogeneous shear flows were considered, and the numer- 
ical results were compared with experimental data. The first case 
is the weak shear flow studied by Champagne et at. (1970). This 
case is the base data used in the determination of model coeffi- 
cients in the rapid term,;. In their experiment, the strain rate is 
12.9 ( I / s ) ,  and the turbulence reaches an asymptotic state. The 
second case is the strong shear flow investigated by Harris et al. 
(1977). In this case, tire shear rate is 44.0 ( I / s ) ,  and the 
turbulence grows exponentially. The third case is the distorting 
duct flow measured by Tucker and Reynolds (1968). In this case, 
mean velocity gradients exist in two directions. These data were 
recommended by Ferziger (1981) in the Stanford Conference. 

Figure 8 shows the numerical results for the first case. Figure 
8a displays the behavior of the total turbulent kinetic energy and 
total Reynolds stresses. The total turbulent kinetic energy is 
governed by the contracted equations, and only the initial energy 
ratio influences the terminal level. Therefore, its time evolution 
depends on the model coefficients ct(1 "), or(2 "), and or(3 m). The 
relative level of Reynolds stresses is governed by rapid terms. As 
the numerical results are in good agreement with the experiment, 
it is apparent that the coefficients adopted in the present model 
are reasonable. Figure 8b shows the temporal change of each 
Reynolds stress in a large- and a small-scale region. Each compo- 
nent of large-scale turbulence behaves differently. R(lXz ) increase 
due to the production. Other normal components decrease, and 
the shear component remains constant. On the other hand, small- 
scale components decrease monotonically and are nearly isotropic. 
Figure 8c shows the energy transfer rates. Large-scale compo- 
nents do not evolve toward isotropy, while small-scale ones are 
nearly isotropic. Shear components are negative here and much 
smaller than normal ones. This characteristic is the same as that 
assumed in single-time-scale models and the direct numerical 
simulation (DNS) results. Although the excellent agreement with 
experiment is a matter of course, since the model coefficients are 
determined by referring to these data, the discrepancies between 
the large- and small-scale motion are very interesting. 

Figure 9 shows the numerical results for the second case 
(Harris et al. 1977), where the shear is strong. It is known that 
single-time-scale models overestimate the turbulent kinetic en- 
ergy. Figure 9a shows that the present model can capture the 
behavior satisfactorily, although Rll  is slightly overestimated. 
Figure 9b shows the time evolution of the partitioned Reynolds 
stresses. All large-scale components increase rapidly due to the 
strong shear, while small-scale ones remain nearly constant. This 
result suggests that production mainly contributes to large-scale 
motion, and the rapid change does not produce an immediate 
effect on small-scale Reynolds stresses. Figure 9c shows the 
energy transfer rates. 7'0) increases drastically because of the ~ 3 3  
large redistribution from R(11 ). Also, small-scale components 
increase rapidly. This reflects the fact that large production 
causes dissipation to increase. 

Figure 10 shows the results for the turbulence through a 
distorting duct measured: by Tucker and Reynolds (1968). Nearly 
homogeneous turbulence is subjected to three strain components 
(i.e., ~U1/~x 1 = - 1 /2~U2/Ox  2 = OU3/ax 3 ~= 0.0). For this case, 

Multiple-time-scale Reynolds stress modeh M. Yamamoto 

I considered only the region where the axial velocity U 2 is nearly 
constant in the duct. The agreement of the numerical results with 
the experiment is quite good (Figure 10a). The behavior of 
partitioned Reynolds stresses and energy transfer rates are shown 
in Figures 10b and c. They are similar to those in the weak shear 
case. 

From these calculations, it is verified that the present model 
can satisfactorily reproduce homogeneous shear flows under dif- 
ferent conditions without rearranging model coefficients. 

Conclusion 

A multiple-time-scale Reynolds stress model was investigated. 
The basic forms of model equations were introduced and applied 
to grid turbulence and homogeneous shear flow. The model 
coefficients, mainly concerned with pressure-strain correlation, 
were determined analytically and /or  numerically. In addition, the 
present model was verified for five sets of experimental data for 
grid turbulence with different initial conditions and two homoge- 
neous shear flows subjected to different mean velocity gradients. 
It was shown that the present model can satisfactorily reproduce 
all data without adjusting model coefficients and that the method 
used to set initial conditions is reasonable for a wide range of 
turbulence. 
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